

Klärtechnische Berechnung für eine 4 Personen Picobells Kleinkläranlage.

Herstellerbezeichnung: Picobells KKSB 4 EW, C

Einwohnergleichwerte: 4 EGW

Behältergeometrie:

Behälteranzahl (n): 1 Stück

Anteil am Gesamtvolumen:
Oberfläche: (A)
Wassertiefe (WT):
Trennwandhöhe:
Volumen (V):

Volumen				
Vorklärung	Biolegie	NK		
50 %	25 %	25 %		
1,75 m²	0,88 m ²	0,88 m ²		
1,20 m	1,20 m	1,20 m		
1,50 m	1,50 m	1,50 m		
2,10 m ³	1,06 m ³	1,06 m ³		

 Gesamtvolumen:
 =
 $4,21 \text{ m}^3$

 Vorklärung: (V)
 =
 $2,10 \text{ m}^3$

 Biologie: (V)
 =
 $1,06 \text{ m}^3$

 Nachklärung: (V)
 =
 $1,06 \text{ m}^3$

1.) Abwassermenge:

$Q_s =$	0,15/ E x d x EW	=	0,60 m ³ /d
$Q_F =$	0,1 x Q _{ges} .	=	0,06 m ³ /d
$Q_{10} =$	$(Q_s + Q_f)/10$	=	0,066 m ³ /h
$Q_{h max} =$	$Q_{10} + 0.2 \text{ m}^3$	=	0,266 m ³ /h
Q _{d max.} =	$Q_{10} \times 9 + Q_{h \text{ max}}$	=	0,86 m ³ /d

2.) Schmutzlast:

B _{ges.} =	$0,060 \text{ Kg BSB}_5 \times \text{EW x d}$	=	0,240 Kg/d
$B_d =$	$0,050 \text{ Kg BSB}_5 x \text{ EW x d}$	=	0,200 Kg/d
B _{ÜS.} =	$0,005 \text{ m}^3/\text{d x E}$	=	0,020 m ³ /d
$N_d =$	$0,01 \text{ Kg NH}_4 \text{ N x EW x d}$	=	0,040 Kg/d

3.) Vorklär- und Schlammstapelbehälter:

4.) PicoBells- Behälter: (hydraulische Berechnung)

 $t_R = V_{WB} / Q_{h max}$ 1,06 m³ : 0,266 m³/h = 16,00 h ok

5.) Wirbelbett: Picobells

wirksame Oberfläche: 450,00 m²/m³ A_{W} Füllgrad der Wirbelkammer 24 % $B_d: B_A$ 0,200 Kg/d : $0,0025 \text{ Kg} / (\text{m}^2/\text{m}^3) = 80,00 \text{ m}^2$ $A_{erf.} =$ $A_{erf.}$ DIBT: = 95,00 m² 112,50 m² A gew. V_ADIBT: $0,20 \text{ m}^3$ 112,50 m² 450,00 m²/m³ $0,25 \text{ m}^3$ V_A A_{gew} : $A_{W=}$ Flächenbelastung: (erf.) $\boldsymbol{B}_{\boldsymbol{A}}$ $0.0025 \text{ Kg} / (\text{m}^2/\text{m}^3)$ $B_d: A_{gew}$. Flächenbelastung: (vorh.) 0,0018 Kg / (m²/m³) Sicherheit: 40,63%

6.) Sauerstoffbedarf:

BSB $_5$ - Abbau: mind 95 % BSB $_5$ - Ablauf: max. 5 %

 $Q_{VR} = \Sigma$ = (Substratatmung + Endogene Atmung + Stickstoffatmung) $Q_{VR} = \Sigma$ = (0,5 x 0,95 x B_d) + (0,24 x X x TS x A _{ges}.) + (4,57 x N_d)

 $\alpha = 0.5$

 $TS = 0.050 \text{ Kg/ m}^2$

Cs = 10,40 mg/ mCx = 1,50 mg/ m

 $Q_{Cd} = Cs / (Cs-Cx) x Q_{VR} / \alpha = 0.965 \text{ Kg O2} / (m^3 x d)$

Rohdichte: $\rho = 1,260 \text{ Kg/m}^3$ Sauerstoffanteil: $\lambda = 20,60 \%$

 $\eta = \rho \ x \ (\lambda / 100)$ = 0,260 Kg O2/ m³ f _{O2} = 0,010 Kg O2/ m³

 $Q_{Vd} = Q_{Cd} / ((\eta x f_{o2}) x h_{E)} = 30,97 m^3$ $t_d = 6,50 h/d$

 Q_{Lh} erf.= Q_{Ld} / t_d = 4,77 m³/h 0,08 m³/min Gew.: = Rietschle Thomas LP 80

Die Einschaltdauer und der Volumenstrom kann aufgrund der objektbezogenen Personenparameter variieren.

8.) Rohrmembranbelüfter:

Leistung des Verdichters: $Q_L \text{ erf.} = 4,80 \text{ m}^3/\text{h}$

zul. Luftbeaufschlagung pro Lüfter: $q_{spez.}$ = 7,00 - 10,00 m³ / h

Lüfterlänge: $n = Q_L / q_{spez}$ = 0,48 Meter

9.) Nachklärung: (hydraulische Berechnung)

 V_{NK} = 1,06 m³ A_{NK} = 0,88 m² WT = 1,20 m

 $t_a = > 3,5 h$ $V_{NK}/Q_{h max.} = 3,97 h$ ok

 $qF < 0.3 \text{ m}^3/\text{m}^2 \text{ x h} = Q_{10} / A_{NK} = 0.30 \text{ m/h}$

Bauartzulassung: DIBT: Z-55.61-464

